Subject Code	Subject Name	Category	L	T	P	C
AI19P62	DATA ANALYSIS AND DATA MINING	PE	2	0	2	3

Ob	Objectives:							
•	To learn the introduction of Data Warehouse and Data Mining.							
•	To understand the concepts of clustering analysis.							
•	To learn the basics of mining text data.							
•	To acquire the basics of mining spatial data.							
•	To study the basic concepts of mining web data.							

UNIT-I INTRODUCTION TO DATA WAREHOUSE AND DATA MINING 6										
Data Warehouse: Characteristics of Data Warehouse - Data Warehouse Components - Designing the Data										
Warehouse - Data Warehouse Architecture - Getting Heterogeneous Data into the Warehouse - Getting										
Multidimensional Data out of the Warehouse. Data Mining: Definition – Architecture – data mining: on what kind of										
data? - Data mining functionalities. (T2: Chapter – 1 and 2)										
UNIT-II CLUSTERING ANALYSIS 6										
Introduction – Feature selection for clustering – Representative based algorithms – Hierarchical clustering algorithms										
– probabilistic model based algorithms – Grid based and density based algorithms – Graph based algorithms – non										
negative matrix factorization – clustering validation. (T1: Chapter -6)										
UNIT-III MINING TEXT DATA 6										
Document Preparation and Similarity computation – Specialized clustering methods for text – topic modeling –										
Specialized Classification Methods for Text – Novelty and First Story Detection. (T1: Chapter –13)										
UNIT-IV MINING SPATIAL DATA 6										
Mining with Contextual Spatial Attributes – Trajectory mining – Equivalence of Trajectories and Multivariate Time										
Series – Converting Trajectories to Multi dimensional Data – Trajectory Pattern Mining – Trajectory Clustering –										
Trajectory Outlier Detection – Trajectory Classification. (T1: Chapter –16)										
UNIT-V MINING WEB DATA 6										
Web crawling and Resource Discovery – Search Engine Indexing and Query Processing – Ranking Algorithm –										
Recommender Systems – Web Usage Mining. (T1: Chapter –18)										
Contact Hours : 30										

List of Experiments										
	In H ₂ O implement the following									
1	Perform the basic pre-processing operations on data relation such as removing an attribute and filter attribute									
1	bank data									
2	To predict the Numerical Values in the given Data Set is using Regression Methods.									
3	To predict with the smallest total error using rules based on One attribute									
4	To understand the theoretical aspects and build a hierarchy of clusters using hierarchical clustering techniques									
5	To Demonstrate Clustering features in Large Databases with noise									
6	Generate association rule for the credit card promotion dataset using a priory algorithm with the support range									
U	40% to 100% confidence as 10% incremental decrease as 5% and generate 6 rules									
	Contact Hours : 30									
	Total Contact Hours : 60									

Cou	Course Outcomes:							
On	On completion of the course, the students will be able to							
•	Explain the introduction of Data Warehouse and Data Mining.							
•	 Apply the concepts of clustering analysis. 							
•	Analyze the basics of mining text data.							
•	Integrate the concepts of mining spatial data.							
•	Demonstrate the basic concepts of mining web data.							

Text Books:

- 1 Charu C. Aggarwal, Data Mining: The Textbook, Springer 2015 Edition, Kindle Edition.
- 2 Sartaj Singh "Data Warehousing and Data Mining", Lovely Professional University, Phagwara.

Reference Books:

- 1 Usama M. Fayyad, Gregory Piatetsky Shapiro, Padhrai Smyth, and Ramasamy Uthurusamy, "Advances In Knowledge Discovery And Data Mining", The M.I.T Press, 1996.
- 2 N. J. Nilsson, "Principles of Artificial Intelligence", Narosa Publishing House, 1980.

CO - PO - PSO matrices of course

PO/PSO	РО	РО	PO	РО	PO	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
AI19P62.1	3	3	-	-	-	-	-	-	-	-	-	-	3	-	1
AI19P62.2	3	3	2	-	-	-	-	-	-	-	-	-	3	-	1
AI19P62.3	-	2	3	3	2	-	3	2	3	-	3	3	-	3	3
AI19P62.4	-	3	3	3	2	-	3	3	3	-	3	3	-	3	3
AI19P62.5	-	3	3	3	3	-	3	3	3	-	3	3	-	3	3
Average	1.2	2.8	2.2	1.8	1.4	-	1.8	1.6	1.8	-	1.8	1.8	1.2	1.8	2.2

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

No correlation: "-"